Partition functions of p-forms from Harish-Chandra characters

نویسندگان

چکیده

A bstract We show that the determinant of co-exact p -form on spheres and anti-de Sitter spaces can be written as an integral transform bulk edge Harish-Chandra characters. The character a contains characters anti-symmetric tensors rank lower to all way zero-form. Using this result we evaluate partition function -forms demonstrate they obey known properties under Hodge duality. conformal forms in even d + 1 dimensions, hyperbolic cylinders transforms involving only This supports earlier observations entanglement entropy evaluated using functions do not contain contributions from modes. For coupled scalars representation free energy branched coincide. Finally propose for spheres.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harish-chandra Vertices

The irreducible complex representations of nite groups of Lie type are divided into series by means of the Harish-Chandra philosophy, whose starting point is the concept of cuspidal characters (see e.g..Sr]). The classiication of the irreducible characters of such a group G can be done in two steps: First nd all cuspidal irreducible characters of Levi subgroups L of G. Then apply Harish-Chandra...

متن کامل

of Harish - Chandra Collected Papers

Harish-Chandra Collected Papers Edited by V. S. Varadarajan Volume 1: 1944–54 pp. 566 Volume 2: 1955–58 pp. 539 Volume 3: 1959–68 pp. 670 Volume 4: 1970–83 pp. 461 Group-representation theory is a broad topic which impinges on many domains of mathematics. The characters of abelian groups are of course central to Fourier analysis and entered at an early stage the theory of numbers, one of severa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep09(2021)094